Platinum- and gold-based drugs on cancer

Bao Jing Chen, Yoke Kqueen Cheah


Cancer remain top health concern around the world. In the war against cancer, drug discovery and development is key focus of main government and non-government organization with the aim of minimizing cancer related harmful outcomes. Emerging of medicinal bioinorganic chemistry has illustrated many innovative metal based drugs that are found to be effective in cancer, with the leading success achieved by cisplatin.  Nevertheless, reporting more and more undesirable problems of cisplatin and other platinum anticancer drugs during clinical trial have provided opportunity in searching novel anticancer drugs with distinct mode of action. This review summarise the development and current status of platinum and non-platinum based cancer chemotherapy, represented by gold.  

Full Text:

Purchase Article


Stewart B, Wild CP (editors). World cancer report 2014. France: International Agency for Research on Cancer, World Health Organization; 2014.

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70. doi: 10.1016/S0092-8674(00)81683-9.

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646–674. doi: 10.1016/j.cell.2011.02.013.

Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol Oncol 2012; 6(2): 155–176. doi: 10.1016/j.molonc.2012.02.004.

Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11(2): 85–95. doi: 10.1038/nrc2981.

Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 2009; 1(2): 1. doi: 10.4172/1948-5956.100000e2

Urruticoechea A, Alemany R, Balart J, et al. Recent advances in cancer therapy: An overview. Curr Pharm Des 2010; 16(1): 3–10. doi: 10.2174/138161210789941847.

Sinclair AJ, Morley JE, Vellas B (editors). Pathy’s principles and practice of geriatric medicine. 5th ed. John Wiley & Sons; 2012. doi: 10.1002/9781119952930.

DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68(21): 8643–8653. doi: 10.1158/0008-5472.CAN-07-6611.

Kufe DW, Pollock RE, Weichselbaum RR, et al. (editors) Holland-Frei cancer medicine. 6th ed. Hamilton, Ontario: BC Decker; 2003.

Morrison W. Cancer chemotherapy: An annotated history. J Vet Intern Med 2010; 24(6): 1249–1262. doi: 10.1111/j.1939-1676.2010.0590.x.

Crawford S. Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemotherapy. Front Pharmacol 2013, 4(68): b7. doi: 10.3389/fphar.2013.00068.

Farquhar-Smith P, Wigmore T (editors). Anaesthesia, intensive care, and pain management for the cancer patient. Oxford, UK: Oxford University Press; 2011.

Haiduc I, Silvestru C. Metal compounds in cancer chemotherapy. Coord Chem Rev 1990; 99: 253–296. doi: 10.1016/0010-8545(90)80065-2.

Garbutcheon-Singh BK, Grant MP, Harper BW, et al. Transition metal based anticancer drugs. Curr Top Med Chem 2011; 11(5): 521–542. doi: 10.2174/156802611794785226.

Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011; 3(1): 1351– 1371. doi: 10.3390/cancers3011351.

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7(8): 573–584. doi: 10.1038/nrc2167.

Basu A, Krishnamurthy S. Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids 2010; 2010. doi: 10.4061/2010/201367.

Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005; 4(4): 307–320. doi: 10.1038/nrd1691.

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364–378. doi: 10.1016/j.ejphar.2014.07.025.

Gomez-Ruiz S, Maksimović-Ivanić D, Mijatović S, et al. On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg Chem Appl 2012; 2012: 140284. doi: 10.1155/2012/140284.

Hartmann JT, Lipp HP. Toxicity of platinum compounds. Exp Opin Pharmacother 2003; 4(6): 889–901. doi: 10.1517/14656566.4.6.889.

Warra AA. Transition metal complexes and their application in drugs and cosmetics–A review. J Chem Pharm Res 2011; 3(4): 951–958.

Baile MB, Kohne NS, Deotarse PP, et al.. Metal ion complex–Potential anticancer drug–A review. Int J Pharmacognosy Phytochem Res 2015; 4(8): 59–66.

Van Rijt SH, Sadler PJ. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today 2009; 14(23): 1089–1097. doi: 10.1016/j.drudis.2009.09.003.

Monneret C. Platinum anticancer drugs. From serendipity to rational design. Ann Pharm Fr 2011; 69: 286–295. doi: 10.1016/j.pharma.2011.10.001.

Robillard MS, Reedijk J. Platinum-based anticancer drugs. In: Scott RA (editor). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons; 2006. doi: 10.1002/9781119951438.eibc0178.

Rosenberg B, Vancamp L. Platinum compounds: A new class of potent antitumour agents. Nature 1969; 222: 385–386. doi: 10.1038/222385a0.

Ariyoshi Y, Ota K. (Japanese) [Second-generation cisplatin analogs]. Gan To Kagaku Ryoho 1987; 14 (4): 1043–1050.

Di Pasqua AJ, Goodisman J, Dabrowiak JC. Understanding how the platinum anticancer drug carboplatin works: From the bottle to the cell. Inorg Chim Acta 2012; 389: 29–35. doi: 10.1016/j.ica.2012.01.028.

Wagstaff AJ, Ward A, Benfield P, et al. Carboplatin. Drugs 1989; 37(2): 162–190. doi: 10.2165/00003495-198937020-00005.

Anderson H, Wagstaff J, Crowther D, et al. Comparative toxicity of cisplatin, carboplatin (CBDCA) and iproplatin (CHIP) in combination with cyclophosphamide in patients with advanced epithelial ovarian cancer. Eur J Cancer Clin Oncol 1988; 24(9): 1471–1479. doi: 10.1016/0277-5379(88)90338-0.

Bakalova A. Perspectives towards development of novel non-classical anticancer platinum (II) complexes. J Chem Technol Metall 2006; 41(2): 119–124.

Montana AM, Batalla C. The rational design of anti-cancer platinum complexes: The importance of the structure-activity relationship. Curr Med Chem 2009; 16(18): 2235–2260. doi: 10.2174/092986709788453087.

Hall MD, Dillon CT, Zhang M, et al. Cellular distribution and oxidation state of platinum and platinum (IV) antitumour complexes in cancer cells. J Bio Inorg Chem 2003; 8(7): 726–732. doi: 10.1007/ s00775-003-0471-6.

Hall MD, Alderden RA, Zhang M, et al. The fate of platinum and platinum (IV) anti-cancer agents in cancer cells and tumours. J Struct Biol 2006; 155(1): 38–44. doi: 10.1016/j.jsb.2006.01.011.

Abu-Surrah AS, Kettunen M. Platinum group antitumor chemistry: Design and development of new anticancer drugs complementary to cisplatin. Curr Med Chem 2006; 13(11): 1337–1357. doi: 10.2174/092986706776872970.

Kostova I. Platinum complexes as anticancer agents. Recent Pat Anticancer Drug Discov 2006; 1(1): 1–22. doi: 10.2174/157489206775246458.

Coluccia M, Natile G. Trans-platinum complexes in cancer therapy. Anticancer Agents Med Chem 2007; 7(1): 111–123. doi: 10.2174/187152007779314080.

Dirersa WB. Contribution of cis- and trans-platinum complexes in synthetic drug and medicinal chemistry from the view of coordination chemistry. Int J Chem Pharm Anal 2014; 2(1): 40–47.

Gibson D. The mechanism of action of platinum anticancer agents—What do we really know about it? Dalton Trans 2009; 48: 10681–10689. doi: 10.1039/b918871c.

Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22(47): 7265–7279. doi: 10.1038/sj.onc.1206933.

Ahmad S. Platinum–DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 2010; 7(3): 543–566. doi: 10.1002/cbdv.200800340.

Tanida S, Mizoshita T, Ozeki K, et al. Mechanisms of cisplatin-induced apoptosis and of cisplatin sensiti- vity: Potential of BIN1 to act as a potent predictor of cisplatin sensitivity in gastric cancer treatment. Int J Surg Oncol 2012; 2012: 862879. doi: 10.1155/2012/862879.

Ott I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev 2009; 253(11): 1670–1681. doi: 10.1016/j.ccr.2009.02.019.

Tiekink E. Anti-cancer potential of gold complexes. Inflammopharmacology 2008; 16(3): 138–142. doi: 10.1007/s10787-007-0018-5.

Tiekink ER. Gold derivatives for the treatment of cancer. Crit Rev Oncol Hematol 2002; 42(3): 225– 248. doi: 10.1016/S1040-8428(01)00216-5.

Pricker SP. Medical uses of gold compounds: Past, present and future. Gold Bull 1996; 29(2): 53–60. doi: 10.1007/BF03215464.

Schmidbaur H, Cronje S, Djordjevic B, et al. Understanding gold chemistry through relativity. J Chem Phys 2005; 311(1): 151–161. doi: 10.1016/j.chemphys.2004.09.023.

Williams ML. Core chemistry of gold and its complexes. Inflammopharmacology 2008; 16(3): 110–111. doi: 10.1007/s10787-007-0019-4.

Glišić BĐ, Djuran MI. Gold complexes as anti-microbial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Transactions 2014; 43(16): 5950–5969. doi: 10.1039/c4dt00022f.

Barnard PJ, Berners-Price SJ. Targeting the mitochondrial cell death pathway with gold compounds. Coord Chem Rev 2007; 251(13): 1889–1902. doi: 10.1016/j.ccr.2007.04.006.

Kostova I. Gold coordination complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry 2006; 6(1): 19–32.

Bertrand B, Casini A. A golden future in medicinal inorganic chemistry: The promise of anticancer gold organometallic compounds. Dalton Transactions 2014; 43(11): 4209–4219. doi: 10.1039/C3DT52524D.

Messori L, Abbate F, Marcon G, et al. Gold(III) complexes as potential antitumor agents: Solution chemistry and cytotoxic properties of some elected gold(III) compounds. J Med Chem 2000; 43(19): 3541–3548. doi: 10.1021/jm990492u

Sun RWY. Strategies to improve the anti-cancer properties of gold(III) complexes. Mod Chem Appl 2013; 1: 102. doi: 10.4172/2329-6798.1000102.

Gabbiani C, Guerri A, Cinellu MA, et al. Dinuclear gold(III) complexes as potential anticancer agents: Structure, reactivity and biological profile of a series of gold(III) oxo-bridged derivatives. TOCRYJ 2010; 3: 29–40.

Marcon G, Carotti S, Coronnello M, et al. Gold(III) complexes with bipyridyl ligands: Solution chemistry, cytotoxicity, and DNA binding properties. J Med Chem 2012; 45(8): 1672–1677. doi: 10.1021/jm010997w.

Milacic V, Chen D, Ronconi L, et al. A novel anti-cancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res 2006; 66(21): 10478–10486. doi: 10.1158/0008-5472.CAN-06-3017.

Zou T, Lum CT, Lok CN, et al. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem Soc Rev 2015; 44(24): 8786–8801. doi: 10.1039/C5CS00132C.

McKeage MJ, Maharaj L, Berners-Price SJ. Mechanisms of cytotoxicity and antitumor activity of gold(I) phosphine complexes: The possible role of mitochondria. Coord Chem Rev 2002; 232(1): 127– 135. doi: 10.1016/S0010-8545(02)00048-6.

Gabbiani C. Proteins as possible targets for antitumor metal complexes: Biophysical studies of their interactions. Firenze, Italy: Firenze University Press; 2009.

Casini A, Hartinger C, Gabbiani C, et al. Gold(III) compounds as anticancer agents: Relevance of gold– protein interactions for their mechanism of action. J Inorg Biochem 2008; 102(3): 564–575. doi: 10.1016/j.jinorgbio.2007.11.003.

Cheng X, Holenya P, Can S, et al. A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol Cancer 2014; 13(1): 221. doi: 10.1186/1476-4598-13-221.

Holenya P, Can S, Rubbiani R, et al. Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene–gold(I) complex. Metallomics 2014; 6(9): 1591–1601. doi: 10.1039/C4MT00075G.

Rigobello MP, Scutari G, Folda A, et al. Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem Pharmacol 2004; 67(4): 689–696. doi: 10.1016/j.bcp.2003.09.038.

Saggioro D, Rigobello MP, Paloschi L, et al. Gold (III)-dithiocarbamato complexes induce cancer cell death triggered by thioredoxin redox system inhibition and activation of ERK pathway. Chem Biol 2007; 14(10): 1128–1139. doi: 10.1016/j.chembiol.2007.08.016.

Tonissen KF, Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 2009; 53(1): 87–103. doi: 10.1002/mnfr.200700492.

Wang Y, He QY, Che CM, et al. Modulation of gold(III) porphyrin 1a-induced apoptosis by mitogen-activated protein kinase signaling pathways. Biochem Pharmacol 2008; 75(6): 1282–1291. doi: 10.1016/j.bcp.2007.11.024.

Bindoli A, Rigobello MP, Scutari G, et al. Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 2009; 253(11): 1692–1707. doi: 10.1016/j.ccr.2009.02.026.



  • There are currently no refbacks.